Подключение светодиодной ленты к драйверу
RGB СВЕТОДИОДНЫЙ КОНТРОЛЛЕР
Описание системы
Захотелось мне сделать RGB свет для видео из китайских компонентов. RGB – значит нужен ШИМ контроллер, значит нужно его сделать! Вот и сделал: GyverRGB – контроллер для RGB светодиодных лент со множеством режимов и настроек, модульной структурой и различными способами управления.
Железо
Используется обыкновенная RGB светодиодная лента с общим анодом (контакты 12V G R B). Я использовал два ряда ленты с плотностью 120 диодов на метр, чтобы иметь хороший запас по яркости даже на одном цвете.
В проекте используется Arduino NANO (микроконтроллер ATmega328p). В качестве 100% совместимого аналога можно использовать Arduino UNO/Pro Mini.
Я рассматривал два варианта драйвера для светодиодной ленты: китайский RGB LED amplifier и самодельный драйвер из трёх МОСФЕТ (полевых) транзисторов. LED amplifier очень удобен в подключении, но имеет жуткий недостаток: на высоких частотах у него поднимается нижний порог яркости, что приводит к трате оттенков и вообще некорректной работе режимов.
Вывод: если контроллер не планируется использовать для видео света, то можно поставить LED amplifier и в настройках контроллера поставить низкую частоту (490 Гц), глаз такую частоту не заметит, но снятое на камеру видео будет «стробить». Если планируется использовать контроллер для создания видео света, то в обязательном порядке нужно делать свой драйвер. Также свой драйвер позволит работать с большими отрезками ленты, т.к. транзисторы можно поставить очень мощные.
Полевой транзистор подойдёт практически любой (99%), наковырять можно из материнской платы. Список популярных МОСФЕТов в корпусе to-220: IRF3205, IRF3704ZPBF, IRLB8743PBF, IRL2203NPBF, IRLB8748PBF, IRL8113PBF, IRL3803PBF, IRLB3813PBF (в порядке роста стоимости). Список популярных МОСФЕТов в корпусе D-pak: STD17NF03LT4, IRLR024NPBF, IRLR024NPBF, IRLR8726PBF, IRFR1205PBF, IRFR4105PBF, IRLR7807ZPBF, IRFR024NPBF, IRLR7821TRPBF, STD60N3LH5, IRLR3103TRPBF, IRLR8113TRPBF, IRLR8256PBF, IRLR2905ZPBF, IRLR2905PBF (в порядке роста стоимости).
Управление контроллером предусмотрено тремя способами:
- Энкодер – китайский модуль в двух вариантах
- ИК пульт – продаётся вместе с приёмником-модулем, но удобнее монтировать отдельный приёмник
- Кнопка – обычная нормально-разомкнутая тактовая кнопка
- Bluetooth – управление с приложения GyverRGB для Android
Питается система от 12V, от блока питания или батареи из трёх литиевых аккумуляторов. При питании от аккумуляторов предусмотрен «вольтметр» – делитель напряжения на резисторах, позволяющий измерить напряжение на батарее для вывода его на дисплей.
Софтовые фишки
- Автоматическое отключение дисплея по таймауту неактивности
- Несколько вариантов частоты ШИМ для драйвера:
- 490 Гц – для дешёвых LED усилителей
- 8 кГц – слышно, как пищит
- 4 кГц – работает только на самодельном драйвере
- Настраиваемая до герца
- Настраиваемое направление работы ШИМ (для готовых и самодельных усилителей)
- Автоматическое ограничение тока потребления на основе количества светодиодов и яркости каналов цвета
- Вывод напряжения питания на дисплей в вольтах или процентах
- Режим поддержания яркости при разрядке аккумулятора (при полном заряде чуть занижает яркость)
- Коррекция яркости по CRT гамме
- Матрица коррекции LUT
- 10 настраиваемых профилей
- 11 настраиваемых режимов работы для каждого профиля, из них 5 статических и 6 динамических
- Настройки хранятся в EEPROM и не сбрасываются при перезагрузке
Описание режимов и настроек
- RGB– цвет в пространстве RGB
-
- BR – яркость (0-255)
- R – красный (0-255)
- G – зелёный (0-255)
- B – синий (0-255)
- HSV– цвет в пространстве HSV
-
- HUE – цвет (0-255)
- SAT – насыщенность (0-255)
- VAL – яркость (0-255)
- Color– яркий цвет
-
- BR – яркость (0-255)
- COL – номер цвета (0-1530)
- ColorSet– предустановленные цвета
-
- BR – яркость (0-255)
- COL – цвет
- WHITE
- SILVER
- GRAY
- BLACK
- RED
- MAROON
- YELLOW
- OLIVE
- LIME
- GREEN
- AQUA
- TEAL
- BLUE
- NAVY
- PINK
- PURPLE
- Kelvin– установка цветовой температуры
-
- BR – яркость (0-255)
- TEMP – цветовая температура, К (1000-10000)
- ColorW– плавная смена цвета
-
- BR – яркость (0-255)
- SPD – скорость (0-1000)
- STP – шаг (0-500)
- Fire– стандартный огонь
-
- BR – яркость (0-255)
- SPD – скорость (0-1000)
- STP – шаг (0-500)
- FireM– ручной огонь
-
- BR – макс. яркость (0-255)
- COL – цвет (0-255)
- SPD – скорость (0-1000)
- MIN – мин. яркость (0-255)
- Strobe– стробоскоп
-
- HUE – цвет (0-255)
- SAT – насыщенность (0-255)
- VAL – яркость (0-255)
- SPD – скорость (0-1000)
- StrobeR– стробоскоп со случайным периодом
-
- HUE – цвет (0-255)
- SAT – насыщенность (0-255)
- VAL – яркость (0-255)
- SPD – скорость (0-1000)
- Police– мигалки
-
- BR – яркость (0-255)
- SPD – скорость (0-1000)
Управление
Энкодер
- Кнопка удержана около секунды – вкл/выкл светодиоды
- Кнопка клик – навигация: выбор профиля -> выбор режима -> выбор настройки
- Смена профиля – поворот рукоятки
- Смена режима – поворот рукоятки
- Смена настройки – поворот рукоятки
- Выбор настройки – нажатие, удержание и поворот рукоятки
ИК пульт
- Кнопки –9 – быстрый переход к профилю с номером
- Кнопки * и # – вкл и выкл систему
- Кнопка ОК – навигация: профиль -> режим -> настройка
- Кнопки вправо/влево – смена профиля/меню/настройки
- Кнопки вверх/вниз – изменение выбранной настройки
Bluetooth
Загрузить приложение GyverRGB (для Android) и наслаждаться!
Кнопка (с версии 1.2)
- Клик: включить/выключить ленту
- Двойной клик: следующий пресет
- Тройной клик: предыдущий пресет
- Удержание: смена яркости
Кнопка вариант 2 (с версии 1.3)
- Клик: включить/выключить ленту
- Двойной клик: следующий цвет (12 цветов по кругу Иттена)
- Тройной клик: предыдущий цвет
- Удержание: смена яркости
Монтаж и подключение светодиодной ленты через блок питания 12-24 Вольт.
Есть две основные причины выхода из строя светодиодной подсветки:
-
не качественные светодиоды и блоки питания
-
не правильный монтаж и подключение с ошибками
Вот основные три правила и ошибки, на которые нужно обращать внимание в первую очередь.
Светодиодная лента подключается параллельно, отрезками не более чем по 5 метров каждый.
Она даже продается катушками этого метража. А что если вам нужно подключить 10 или 15м? Казалось бы, подсоединил конец первого куска с началом второго и готово. Однако такое подключение запрещается. Почему так принято?
Потому что пять метров – это расчетная длина, которую могут выдержать токоведущие дорожки ленты. При большей длине, нагрузка будет превышать допустимую и лента обязательно выйдет из строя. Кроме того, будет наблюдаться неравномерность свечения. В начале ленты светодиоды будут светить ярко, а в конце гораздо тусклее.
Вот так будет выглядеть схема параллельного подключения светодиодных лент длиной превышающих допустимую:
При этом подключать ленту можно как с двух сторон, так и с одной. Подключение с двух сторон позволяет уменьшить нагрузку на токовые дорожки, а также помогает избежать неравномерности свечения в начале и конце ленты.
Особенно это важно на мощной ленте – свыше 9,6Вт/метр. Именно так советуют подключать профессионалы, которые занимаются установкой светодиодной продукцией долгие годы. Единственный жирный минус – приходится тащить дополнительные провода вдоль всего освещения.
Светодиодная лента должна обязательно монтироваться на алюминиевый профиль, который выполняет роль теплоотвода.
Во время работы лента нагревается, и эта температура отрицательно влияет на сами светодиоды. Они попросту перегреваются и начинают терять яркость, постепенно деградируя и разрушаясь.
Таким образом лента, которая могла бы спокойно проработать 5-10 лет, без профиля перегорит у вас через год, а может даже и раньше. Поэтому использование алюминиевого профиля в светодиодной подсветке обязательно.
Единственная лента, где можно обойтись без него – это SMD 3528. Она маломощная, всего 4,8Вт на 1м и не столь требовательна к теплоотводу.
Особенно нуждаются в теплоотводе ленты залитые сверху силиконом. В них теплоотдача происходит только через подложку, снизу. А этого бывает иногда недостаточно. Если вы еще наклеите ее на какой-нибудь пластик или дерево, то здесь вообще никакого охлаждения не будет.
Правильный выбор блока питания это гарантия долговременной и безопасной работы всей подсветки.
Блок питания должен быть мощнее чем светодиодная лента на 30%.
Только в этом случае он будет работать нормально. Если вы подберете его впритык, ровно по мощности всех светодиодов, то блок будет постоянно трудиться на своем пределе. Естественно такая работа скажется на продолжительности эксплуатации. Поэтому всегда давайте ему запас.
Для монтажа освещения с помощью светодиодной ленты вам понадобится:
-
бухта светодиодной ленты. Необходимую длину отрежете в процессе монтажа.

-
трехжильный кабель ВВГнг-Ls сечением 1,5мм2

-
блок питания

-
диммер и пульт управления

-
монтажный провод ПуГВ. Лучше всего взять с разноцветной изоляцией красного и черного цветов. Сечение также 1,5мм2

Если у вас не выполнены эл.монтажные работы, то предварительно необходимо подвести напряжение 220В к месту подключения ленты. Для этого штробите стену, либо укладываете кабельный канал и протягиваете по нему трехжильный кабель ВВГнг-Ls 3*1,5. Ведете его непосредственно до той распредкоробки, где будет подключаться питание светодиодной ленты.
Можно использовать существующую распаечную коробку, где подключено основное освещение. Главное чтобы место позволяло свободно подключить дополнительные провода и клеммники.
Выключатель на светодиодную ленту желательно устанавливать именно на провода 220 Вольт, а не перед лентой на отходящие 12-24В. В этом случае блок не будет работать постоянно. Тем более, импульсным блокам работать без нагрузки противопоказано. К тому же так будет выше уровень безопасности.
Предварительно проверьте и не перепутайте фазу, ноль и землю. Чаще всего, ноль бывает синего цвета, заземляющая жила – желто-зеленого, а фазная – любых других расцветок.
Но доверять только цветовой маркировке нельзя! Более подробно как без ошибок отличить ноль и фазу можно ознакомиться в статье “Как определить фазу и ноль в электропроводке”.
Далее нужно от этой распредкоробки в штробе, гофрорукаве или в кабельном канале проложить кабель к будущему месту установки блока питания. Для его размещения монтируете удобную полочку. Изготовить ее можно из кусков фанеры или гипсокартона. Рядом размещаете и диммер.
Протянув кабель до блока, можно приступать непосредственно к подключению проводов.
Сообщества › Электронные Поделки › Форум › LED драйвер или как подключить светодиоды?
Да, да, да знаю что тема уже пережеванная вдоль и поперек но я так и не понял что к чему.
Есть стабилизаторы тока, есть напряжения, есть драйвера но понять для чего все это не могу.
перечитал кучу тем с пояснением что и куда все равно не пойму почему там много всего.
И никто не пояснит мне толком, что это сюда а это сюда.
К примеру взять светодиоды 3528 напаять как я понял их на плату по 3 штуки в ряд с резистором. готово.
Далее что бы они быстро не кончились нужна стабилизация. вот тут я и висну. Один кричит поставь драйвер, другой елм317, третий 317 говно ставь еще там какую то хрень.
Поясните простым человеческим языком что как и для чего. Прошу не отправляйте в другие темы, читал я их и не раз.
я это 100 раз читал но ответа на свой вопрос не нашел
Знаний вам общего плана, значит не хватает. Или нет желания логически подумать.
уже думал
но конкретики не пойму.
в машине напряжение 14 вольт к примеру, мне нужно подать фиксировано питание 12 вотльт.
Следовательно нужен стабилизатор напряжения.
И тут в меня снова летят камни и все кричат нужен драйвер или стаб тока.
Начните с простого расчёта.
Рассчитайте необходимый резистор для цепочки из одного светодиода и для цепочки из 3-х светодиодов, в обоих случаях для напряжения 14 В.
Посчитайте в каком пределе будет изменяться ток в цепочке из одного светодиода и резистора и в цепочке из трёх светодиодов и резистора, при подключении её к источнику напряжения от 12,6 до 14,4 В.
Вы увидите, что в одном случае ток будет меняться в небольшом пределе, а в другом, в существенном. Вот в том случае, где ток в меньшей степени зависит от изменения напряжения, стабилизатор напряжения не нужен, а где ток гуляет в более широком пределе при таком же изменении напряжения — стабилизатор напряжения желателен.
Также учитывайте, что линейный стабилизатор напряжения имеет минимальное падение через себя, примерно 1,5 В, а значит, что например, при напряжении 12,6 В на его выходе будет не более 11 В. т.е. 12 вольтовый стабилизатор по сути стабилизировать ничего не будет, а будет лишь “ограничивать напряжение”, при подаче на его вход напряжения свыше 13,5 В.
тогда зачем драйвер?
Начните с простого расчёта.
Рассчитайте необходимый резистор для цепочки из одного светодиода и для цепочки из 3-х светодиодов, в обоих случаях для напряжения 14 В.
Посчитайте в каком пределе будет изменяться ток в цепочке из одного светодиода и резистора и в цепочке из трёх светодиодов и резистора, при подключении её к источнику напряжения от 12,6 до 14,4 В.
Вы увидите, что в одном случае ток будет меняться в небольшом пределе, а в другом, в существенном. Вот в том случае, где ток в меньшей степени зависит от изменения напряжения, стабилизатор напряжения не нужен, а где ток гуляет в более широком пределе при таком же изменении напряжения — стабилизатор напряжения желателен.
Также учитывайте, что линейный стабилизатор напряжения имеет минимальное падение через себя, примерно 1,5 В, а значит, что например, при напряжении 12,6 В на его выходе будет не более 11 В. т.е. 12 вольтовый стабилизатор по сути стабилизировать ничего не будет, а будет лишь “ограничивать напряжение”, при подаче на его вход напряжения свыше 13,5 В.
хотя как сейчас понял я если поключашь светодиод к авто, то нужно подобрать резистор и поставить стаб напряжения.
а если поставить стаб тока то резисторы на светодиоды можно не ставить так?
Что такое драйвер и для чего он нужен светодиодам
Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.
Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .
Назначение.
Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.
Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.
Принцип работы.
Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.
В простейшем и самом дешевом случае просто ставят ограничительный резистор.
Питание диода через ограничивающий резистор.
Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.
Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:
Пример.Импульсная стабилизация (упрощенно)
При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это – принцип ШИМ – широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.
Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.
Характеристики драйверов, их отличия от блоков питания LED ленты.
Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.
Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.
Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.
Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.
При выборе драйвера нужно учесть:
Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.
Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.
Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.
Сила тока через линейку будет рассчитываться по аналогичной формуле.
Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.
Схема простого led-драйвера без гальванической развязки.
Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.
Как выбрать драйвер для светодиодов.
От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.
В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.
Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.
Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.
Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.
На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:
- класс защищенности от пыли и жидкости,
- мощность,
- номинальный стабилизированный ток,
- рабочее входное напряжение,
- диапазон выходного напряжения.
Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.
Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.
Подключение светодиодной ленты к блоку питания
Подразумевается, что вы приобрели стандартную светодиодную ленту, одноцветную. Например такую SMD 3528/60 IP20 White. Эта лента состоит из светодиодов 3528, которые располагаются по длине в количестве 60 диодов на 1 погонный метр. 3528 – означает размер одного светодиода. То есть 3,5х2,8 мм. Соответственно 5050 – означает, что размер 5х5 мм. Степень защиты IP 20, белого свечения (Рис.1).
Лента намотана на катушку. Длина светодиодной ленты 5 м. С обоих концов ленты имеются уже припаянные провода (Рис.2). Что довольно удобно, в том случае, если вы собираетесь использовать сразу весь кусок не отрезая его на части. Запомнить полярность легко. Красный – это всегда +(плюс). Нам это понадобится в дальнейшем.
Поскольку светодиодные ленты рассчитаны 12 В постоянного напряжения, то необходимо приобрести помимо самой ленты еще и блок питания, так называемый драйвер. Для нашей ленты нам необходим блок питания на 30 Вт.
Светодиодная лента 3528/60 потребляет 4,8 Вт электрической энергии на 1 м. То есть 5 метров ленты потребляют – 24 Вт. Для питания ленты драйвер надо брать с запасом по мощности + 15-20 % от ее потребления. То есть драйвер для нашей светодиодной ленты на 30 Вт, как раз то что нужно. При условии, что вы ее будете использовать всю, то есть все 5 метров. При недостаточно мощном блоке питания, лента будет светиться, но не будет выдавать 100 % своей яркости. Использование более мощного блока питания нецелесообразно лишь с точки зрения трат на него лишних денежных знаков. А применять можно хоть 60 Ваттный, хоть 100 Ваттный драйвер на 5 метров. Но повторюсь – это не имеет смысла и применимо лишь в случае когда нет подходящего драйвера.
Итак с блоком питания, то бишь драйвером мы определились и выбрали на 30 Вт. Да, еще одна ремарочка. Блоки питания бывают герметичными (для использования вне помещений) и открытыми, только для использования в помещениях. Поскольку наша светодиодная лента имеет степень защиты IP 20, то есть она открытая и не защищена от внешних факторов, в том числе погодных, то подразумевается, что мы ее будем использовать в помещении. Таким образом и драйвер нам подойдет обычный, не герметичный. На 30 Вт драйвера не оказалось, я взял на 40 Вт (Рис.3). Разница в деньгах не критичная на открытые блоки питания.
Давайте разберемся с подключением светодиодной ленты к блоку питания. На картинке (Рис.4) мы видим 5 клемм. L и N (АС) служат для подключения переменного напряжения(того что у нас дома в розетке). К зажиму L надо подключать, так называемую “фазу”. Определить её можно обычной индикаторной отверткой. Та которая светится и есть “фаза”. N соответственно 0(ноль) или нейтраль. Третий слева зажим – заземляющий. В современных квартирах все розетки уже имеют заземляющий проводник, вот его туда и прикручиваем, он желто-зеленого цвета. Далее идут два зажимчика, к которым мы подключаем нашу светодиодную ленту. Тут все понятно. К -V идет проводник черный(отрицательный), а к +V соответственно красный. Полярность нужно обязательно соблюсти, иначе лента не будет светиться. Некоторые светодиодные ленты даже могут выйти из строя если перепутать проводки. Но это как правило ленты сомнительного производства.
После этих процедур ваша лента должна светиться. Если необходимо постоянно включать/выключать светодиодную ленту, то нужно в цепь включить какой-нибудь выключатель. Этот выключатель лучше ставить в разрыв линии N. Так при отключении выключателя мы отключим полностью питание и на драйвере и на светодиодной ленте. Отрезаем и подпаиваемся.
Далее мы рассмотрим подключение отдельного куска светодиодной ленты
То есть допустим вам надо использовать не все 5 метров, а только лишь 2 метра ленты. Внимательно посмотрев на ленту мы увидим, что через каждые 3 (три) светодиода проходит условная граница, которая и показывает нам, что резать нужно именно тут. То есть отмерив отрезок светодиодной ленты, который вам необходим, смело отрезайте именно в таком месте ленту. Но не забывайте одно старое правило – семь раз отмерь, один раз отрежь! Как правило линия отреза проходит между медными площадками, к которым надо будет припаять концы проводников. На Рис.5 мы видим одноцветную светодиодную ленту, которая имеет стандартную схему с двумя проводниками – +(плюс) и -(минус). На Рис.6 изображена так называемая rgb светодиодная лента, то есть многоцветная. Она имеет 4 контакта для подключения.
Таким образом отрезав нужный кусок светодиодной ленты, нужно припаять два проводочка к этим площадкам, естественно соблюдая полярность. Желательно, чтобы не путаться, к плюсовой припаивать провод красного цвета, это касается одноцветной ленты. Ну а для rgb светодиодной ленты также все просто. Расшифруем аббревиатуру RGB – Red(красный), Green(зеленый), Blue(синий). Соответственно припаивать лучше проводники с изоляцией соответствующего цвета и тогда будет все без путаницы. Еще один нюанс касательно rgb светодиодной ленты. У некоторых производителей рядом с площадочками, через каждые 3 диода промаркировано: R G B, то есть даже если вы возьмете кусочек такой светодиодной ленты, вы всегда будете знать каким образом подключить ее. Но так делают не все производители и такая светодиодная лента скорее исключение из правил и она более дорогая.
Этот кусок статьи я добавляю спустя 1-1,5 после опубликования. Я совсем забыл упомянуть про такие удобные штуки, как коннекторы для светодиодной ленты. С помощью этих полезных девайсов можно ускорить время монтажа светодиодной ленты в разы. Так как паять уже ничего не придется. Давайте рассмотрим их коротенько. Коннекторы для подключения светодиодной ленты бывают нескольких типов.
- Коннекторы для соединения двух кусков светодиодной ленты между собой (Рис.7).
- Коннекторы для соединения светодиодной ленты с драйвером (Рис.8).
- Коннекторы для соединения rgb светодиодной ленты с rgb контроллером (Рис.9).
Далее подключаем светодиодную ленту к блоку питания (драйверу), а его уже непосредственно к сети 220В. В случае rgb светодиодной ленты сначала подключаем контроллер rgb, а далее от него стандартно к блоку питания(драйверу). Естественно всегда соблюдаем полярность.
Сообщества › Электронные Поделки › Форум › LED драйвер или как подключить светодиоды?
Да, да, да знаю что тема уже пережеванная вдоль и поперек но я так и не понял что к чему.
Есть стабилизаторы тока, есть напряжения, есть драйвера но понять для чего все это не могу.
перечитал кучу тем с пояснением что и куда все равно не пойму почему там много всего.
И никто не пояснит мне толком, что это сюда а это сюда.
К примеру взять светодиоды 3528 напаять как я понял их на плату по 3 штуки в ряд с резистором. готово.
Далее что бы они быстро не кончились нужна стабилизация. вот тут я и висну. Один кричит поставь драйвер, другой елм317, третий 317 говно ставь еще там какую то хрень.
Поясните простым человеческим языком что как и для чего. Прошу не отправляйте в другие темы, читал я их и не раз.
я это 100 раз читал но ответа на свой вопрос не нашел
Знаний вам общего плана, значит не хватает. Или нет желания логически подумать.
уже думал
но конкретики не пойму.
в машине напряжение 14 вольт к примеру, мне нужно подать фиксировано питание 12 вотльт.
Следовательно нужен стабилизатор напряжения.
И тут в меня снова летят камни и все кричат нужен драйвер или стаб тока.
Начните с простого расчёта.
Рассчитайте необходимый резистор для цепочки из одного светодиода и для цепочки из 3-х светодиодов, в обоих случаях для напряжения 14 В.
Посчитайте в каком пределе будет изменяться ток в цепочке из одного светодиода и резистора и в цепочке из трёх светодиодов и резистора, при подключении её к источнику напряжения от 12,6 до 14,4 В.
Вы увидите, что в одном случае ток будет меняться в небольшом пределе, а в другом, в существенном. Вот в том случае, где ток в меньшей степени зависит от изменения напряжения, стабилизатор напряжения не нужен, а где ток гуляет в более широком пределе при таком же изменении напряжения — стабилизатор напряжения желателен.
Также учитывайте, что линейный стабилизатор напряжения имеет минимальное падение через себя, примерно 1,5 В, а значит, что например, при напряжении 12,6 В на его выходе будет не более 11 В. т.е. 12 вольтовый стабилизатор по сути стабилизировать ничего не будет, а будет лишь “ограничивать напряжение”, при подаче на его вход напряжения свыше 13,5 В.
тогда зачем драйвер?
Начните с простого расчёта.
Рассчитайте необходимый резистор для цепочки из одного светодиода и для цепочки из 3-х светодиодов, в обоих случаях для напряжения 14 В.
Посчитайте в каком пределе будет изменяться ток в цепочке из одного светодиода и резистора и в цепочке из трёх светодиодов и резистора, при подключении её к источнику напряжения от 12,6 до 14,4 В.
Вы увидите, что в одном случае ток будет меняться в небольшом пределе, а в другом, в существенном. Вот в том случае, где ток в меньшей степени зависит от изменения напряжения, стабилизатор напряжения не нужен, а где ток гуляет в более широком пределе при таком же изменении напряжения — стабилизатор напряжения желателен.
Также учитывайте, что линейный стабилизатор напряжения имеет минимальное падение через себя, примерно 1,5 В, а значит, что например, при напряжении 12,6 В на его выходе будет не более 11 В. т.е. 12 вольтовый стабилизатор по сути стабилизировать ничего не будет, а будет лишь “ограничивать напряжение”, при подаче на его вход напряжения свыше 13,5 В.
хотя как сейчас понял я если поключашь светодиод к авто, то нужно подобрать резистор и поставить стаб напряжения.
а если поставить стаб тока то резисторы на светодиоды можно не ставить так?