Oreanda-online.ru

От чего окисляется алюминий

Степень окисления и физические свойства алюминия

Степень окисления алюминия характеризует валентность химического элемента, отражает его способность образовывать соединения. Это свойство учитывается при разведке месторождений руд, богатых на ценный компонент, технологии их обогащения, очистки от примесей второстепенных соединений и применении в разных отраслях производства.

Физические и химические параметры элемента

Алюминий — химический элемент с атомным номером 13, представляющий собой металл серебристо-белого цвета. Его название происходит от латинского слова alumen — квасцы. Практически во всех соединениях химический элемент проявляет валентность 3.

  • Кристаллизация химического элемента происходит в кубической гранецентрированной решетке. Металл может окисляться при комнатной температуре. При этом его поверхность покрывается тонкой оксидной пленкой, выполняющей защитную функцию.
  • Температура плавления химически чистого алюминия 660 °C, кипения – 2450 °C. Плотность металла при нормальных условиях составляет 2,6989 г/см3.
  • На воздухе алюминий окисляется с образованием тонкой пленки, которая препятствует дальнейшему реагированию с металлом. Такое защитное соединение формируется, если поместить алюминий в концентрат азотной кислоты.
  • Металл активно взаимодействует с соляной кислотой. При реакции со щелочами сначала разрушается защитный оксидированный слой, а затем происходит реакция с образованием алюминатов натрия, калия (в зависимости от вида щелочного соединения).
  • При нагревании химический элемент реагирует с бромом и хлором. При взаимодействии с серой образуется сульфид алюминия, который легко растворяется в воде. С водородом металл реагирует косвенно путем искусственного синтеза органических соединений. В результате образуется сильнейший восстановитель — полимерный гидрид алюминия.
  • При сжигании порошкообразного металла на воздухе образуется тугоплавкий порошок оксида химического элемента, соединение которого обладает высокой прочностью. Это свойство используется для восстановления металлов из их окислов.
  • В лабораторных условиях соединения алюминия, содержащие гидроксильную группу OH, можно получить в результате обменных реакций или за счет добавления в раствор соды или аммиака. Соединение алюминия оседает на дно в виде гелеобразного осадка.

Технологии извлечения алюминия

Химический элемент № 13 является самым распространенным в природе, его содержание в земной коре составляет около 9%. Металл входит в состав более 250 минералов, главным образом, алюмосиликатов, из которых состоит земная кора.

Продуктом разрушения образований является глина, состоящая из каолинита. В ней иногда содержится примесь железа, придающая бурый цвет.

Несмотря на то, что в природе существует много минеральных образований, не все они являются рудным материалом для извлечения ценного компонента. Для добычи используют бокситовые руды, в которых содержится промышленная концентрация металла.

Алюминий образует минерал корунд, по твердости уступающий алмазу. Содержание в алюминиевом соединении Al2O3 примеси оксида хрома, титана и железа формирует драгоценные минералы рубин и сапфир.

  • Из обогащенной руды ценный компонент извлекают путем электролиза раствора оксида в расплавленном соединении фтора, натрия и алюминия (криолите). Такой способ позволяет проводить электролиз при температуре менее 1000 °C.
  • Благодаря низкой плотности расплава, жидкое соединение опускается на дно, что облегчает извлечение. При электролитическом получении металла для начала из глинозема выделяют чистый оксид Al2O3.
  • Перед использованием руду очищают от примесей соединений железа, кремния, кальция. При обжиге бокситов испаряется содержащаяся в минералах вода. Полученный материал разделяют при воздействии углекислого газа на соединение.

Широко применяется в производстве чистого алюминия химический способ. Он состоит в обработке руды щелочью NaOH при температуре 220 °C с получением Al (OH)2. В результате гидролиза раствора происходит окисление алюминия и осаждение его соединения.

Потом в результате использования углекислого газа получают соду и поташ. Для получения химически чистого материала технический материал нагревают в парах AlF3 с последующим охлаждением. В результате изменения температуры происходит выделение чистого алюминия.

Производство металла высокой чистоты предусматривают разработку новых технологий и создание условий, при которых металл может оксидировать без дополнительных затрат энергии.

Один из новых методов предусматривает синтез оксида алюминия высокой чистоты методом каталитического окисления металла кислородом воды с применением ультразвуковых колебаний, разработку автокаталитического способа получения субмикронного порошка с последующим формирование брикет высокой плотности.

Сферы использования металла и его соединений

Значительное количество алюминия находится в фарфоре, кирпиче, цементе. По масштабам использования сплавы металла уступают место железу. Широкое применение алюминиевых материалов в различных отраслях связано с рядом физических и химических параметров:

  • невысокая плотность;
  • металл не ржавеет, обладает устойчивостью к коррозии;
  • имеет высокую электропроводность;
  • легко поддается штамповке, прокату и обладает ковкостью;
  • пластичен и прочен;
  • на поверхности алюминиевых сплавов легко наносятся декоративные и защитные покрытия.

При добавлении разных лигатурных компонентов сплавы на основе алюминия приобретают новые свойства, формируя интерметаллические соединения или твердые растворы.

Не все материалы способны образовывать оксидные пленки даже принудительно. Для сохранения антикоррозионных свойств материала кислотно-щелочной баланс должен соответствовать диапазону от 6 до 8 единиц.

Чистый алюминий практически не подвергается воздействию агрессивной среды. Даже тонкое покрытие поверхности металлом без примесей способно предотвратить реакцию.

Основную массу металла используют для получения легких сплавов:

  • дюралюминия, в котором находится 94% алюминия, 4% меди, по 0,5% железа, марганца, кремния и магния;
  • силумина — до 90% основа, до 14% кремний и натрий.

В металлургии химический элемент используют в качестве лигатурной добавки в составы на основе меди, никеля, железа, магния. Такие соединения широко применяются в автомобилестроении, в быту, авиационной технике.

Из сплава с основным содержанием алюминия был изготовлен первый искусственный спутник планеты Земля. В виде порошка его используют как компонент ракетного топлива. Эта идея принадлежит Ф. А. Цандеру. Сплав металла с цирконием используют в строительстве ядерных реакторов, изготовлении взрывчатых материалов.

Электрохимическим способом на поверхности ювелирной бижутерии наносят защитные окрашенные пленки, по внешнему виду напоминающие золото. Сплав алюминия с золотом, обладающий насыщенным фиолетовым цветом, используют в качестве вставок в украшения.

При обращении с металлом в домашних условиях нужно соблюдать правила эксплуатации посуды из алюминия. Чтобы продукты не окислились, то их стоит хранить в эмалированной или стеклянной посуде.

Готовить в посуде из алюминия можно нейтральные жидкости, например, воду или молоко. Кислые блюда реагируют с металлом и приобретают неприятный вкус в результате разрушения оксидной пленки.

Металл можно расплавить в домашних условиях с целью изготовления различных деталей методом литья. В промышленном производстве в качестве материала для форм используют металл с высшей температурой плавления, а в кустарных условиях для этой цели применяют гипс.

Способы борьбы с коррозией алюминия

Алюминий – широко распространенный в промышленности и быту металл. Окисление алюминия на воздухе не происходит. Его инертность обусловлена тонкой оксидной пленкой, защищающей его. Однако под влиянием определенных факторов из окружающей среды этот метал все же подвергается разрушительным процессам, и коррозия алюминия — не такое уж и редкое явление.

Виды коррозии

Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.

Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:

  • Химическую коррозию – происходит в газовой среде без участия воды.

  • Электрохимическую коррозию – протекает во влажных средах.

  • Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.

На видео: электрохимическая коррозия металлов и способы защиты.

Причины коррозии алюминия

Коррозионная стойкость алюминия зависит от нескольких факторов:

  • чистоты – наличия примесей в металле;
  • воздействующей среды – алюминий может одинаково подвергаться разрушению и на чистом сельском воздухе и в промышленно загрязненных районах;
  • температуры.

Во многих случаях малоконцентрированные кислоты могут растворить алюминий. От возникновения коррозии не защищает естественная окисная пленка.

Мощные разрушители – фтор, калий, натрий. Алюминий и его сплавы корродируют при воздействии химических соединений брома и хлора, растворов извести и цемента.

Коррозия алюминия и его сплавов происходит в воде, воздухе, оксидах углерода и серы, растворах солей. Морская вода приводит к ускоренному разрушению. Алюминий считается активным металлом, но при этом отличается хорошими коррозионными свойствами.

Выделяют два основных фактора, которые влияют на интенсивность коррозийного процесса:

  • степень агрессивности воздействующей окружающей среды – влажность, загрязненность, задымленность;
  • химическая структура.

Алюминий не подвергается коррозии в чистой воде. Не влияют на защитную оксидную пленку нагревание и пар.

Проявление коррозии алюминия

Выделяют следующие виды коррозии алюминия и его сплавов:

  • Поверхностная – наиболее распространенная, приносит наименьший вред, легко заметна и быстро поддается устранению.
  • Локальная – разрушения наблюдаются в виде углублений и пятен. Опасный вид коррозии в силу своей незаметности. Встречается в труднодоступных частях и узлах металлических конструкций.
  • Нитеподобная, филигрань – наблюдается под покрытиями из органики, на ослабленных местах поверхности.

Любой из видов коррозии конструкций из алюминия является причиной разрушения.

Это сокращает срок эксплуатации изделий. В гальванической паре алюминий может корродировать, при этом он защищает другой металл.

Естественных антикоррозийных свойств алюминия и его сплавов недостаточно. Поэтому механизмы, агрегаты, конструкции и изделия из металла нуждаются в дополнительной защите.

Способы борьбы с коррозией

Защита от коррозии производится несколькими способами:

  • Механическое лакокрасочное защитное покрытие.
  • Электрохимическая защита – покрытие более активными металлами;
  • Покрытие алюминия порошковыми составами, так называемый процесс аллюминирования;
  • Высоковольтное анодирование;
  • Химическое оксидирование;
  • Применение ингибиторов коррозии.

Механическое покрытие

Как защитить алюминий от коррозии? Чаще всего применяют механический способ – нанесение слоя краски.

Покройте краской изделие и вы убедитесь в действенности этого способа. Окрашивание бывает мокрым и сухим, или порошковым. Эти технологии усовершенствуются. При мокром окрашивании лакокрасочные слои наносят после защиты алюминия составом, содержащим соединения цинка и стронция. Металлическую основу тщательно подготавливают: защищают, шлифуют, сушат. Грунт наносят поэтапно.

Когда растворитель из грунтовочной смеси полностью исчезнет, поверхность можно покрывать изолирующим составом: масляным или глифталиевым лаком.

Специальные составы помогают остановить коррозию и защищают алюминиевые конструкции от химикатов, бензина, различного вида масел. Выбор покрытия зависит от условий последующей эксплуатации металлического изделия:

  • молотковые – применяют для получения конструкций различных цветовых оттенков, используемых в декоре;
  • бакелитовые – наносят под высоким давлением, заполняя микротрещины и поры.

Порошковое окрашивание требует тщательной очистки поверхности от жира и различных отложений. Это достигается погружением в щелочные или кислотные растворы с добавлением смачивателей. Далее на алюминиевые конструкции наносится слой хроматных, фосфатных, циркониевых или титановых соединений. После этого он не будет окисляться.

После просушки материала на окислившийся участок наносят защитный полимер. Чаще всего используются полиэфиры, стойкие к механическому, химическому и термическому воздействию. Применяют полимеризованный уретан, эпоксидные и акриловые порошки.

Оксидирование алюминия

Оксидирование алюминия протекает при постоянном токе под напряжением 250 В. Наращивание защитной пленки происходит при комнатной температуре с водяным охлаждением. Не требуется импульсного источника. Пленки получаются плотными и прочными в течение 45-60 минут.

На плотность и цвет оксидного покрытия влияет температура электролита:

  • пониженная температура образует плотную пленку яркого цвета;
  • повышенная – формирует рыхлую пленку, требующую дальнейшей окраски.

Образовать защиту алюминия от коррозии можно электрохимической реакцией. Процесс разделен на несколько этапов:

1. На стадии подготовки алюминиевое изделие обезжиривают, погружая его в раствор щавелевой кислоты.

2. После промывания водой опускают в щелочной раствор, чтобы удалить неравномерно образовавшийся оксидный слой.

3. Для дополнительной окраски алюминиевые изделия погружают в соответствующие растворы солей. Чтобы заполнить образовавшиеся поры, металлический материал обрабатывают паром.

4. Затем изделие подвергают сушке. Анодное оксидирование может проводиться с применением переменного тока.

Для защиты от коррозии применяют химическое оксидирование – менее затратное, не требующее специального электрического оборудования и квалификации исполнителей. Используется несложный химический состав.

В процессе алюминирования полученная оксидная пленка толщиной в 3 мкм имеет салатный цвет, обладает высокими электроизоляционными свойствами, не пориста, не окрашивается.

Коррозия алюминия возникает вследствие находящихся рядом металлов, которые окислились. Предотвращению этот процесса способствует изоляция. Это могут быть прокладки из резины, битума, паронита. При покрытии ржавчиной применяются лак и другие изолирующие материалы. Других способов избавиться от этой проблемы пока нет.

Три способа удалить окисную плёнку с поверхности алюминия (1 видео)

Ржавеет ли алюминий: свойства материала, причины коррозии и способы защиты

Алюминий является материалом, который люди часто используют в промышленности и для собственных нужд. Подобный металл отличается гибкостью, а также устойчивостью к внешним воздействиям. Он не токсичен и безопасен для здоровья человека. Серебряный цвет позволяет применять металл для различных целей. Это промышленность и бытовая сфера.

При работе в промышленности люди часто задаются вопросом, ржавеет ли алюминий. Всем известно, что если на листе появляется повреждение, то может развиться коррозия. Следует узнать, почему алюминий ржавеет иначе, чем другие сплавы. Необходимо выяснить причины, по которым он подвергается коррозии. Обо всем этом и не только – читайте в нашей сегодняшней статье.

Свойства

Давайте изучим характеристики алюминия. Описываемый металл плавится при температуре 659 градусов Цельсия. Плотность вещества составляет 2,69*103 кг/см 3 . Алюминий относят в группу активных металлов. Устойчивость к коррозионным процессам зависит от ряда факторов:

  1. Чистота сплава. Для производства различного оборудования берут металл, отличающейся своей чистотой. В нем не должно быть различных примесей. Широко распространен алюминий марки АИ1, а также АВ2.
  2. Среда, в которой находится алюминий.
  3. Какая концентрация примесей в окружающей алюминий среде.
  4. Температура.
  5. Большое влияние оказывает рН среды. Нужно знать, что оксид алюминия может образовываться, когда рН находится в интервале между 3 и 9. В той среде, где на поверхности листа алюминия сразу же появляется оксидная пленка, коррозионные процессы развиваться не будут.

Как алюминий защищен от коррозии?

Сплавы других металлов подвержены появлению ржавчины. Она проявляется достаточно быстро. Если создать для алюминия определенные условия, то он не будет разрушаться долгие годы. Для защиты алюминия от коррозии на нем образуется специальная пленка. Она ложится тонким слоем, который составляет от 5 до 10 миллиметров. Состоит подобное покрытие из оксида алюминия.

Пленка является прочной и дает металлу дополнительную защиту от внешних негативных воздействий. Благодаря такому слою воздух и влага не попадают в структуру материала. Если целостность оксидного покрытия нарушается, то начинается процесс коррозии алюминия. Металл теряет свои свойства.

Причины появления коррозии

Когда встает вопрос о том, ржавеет ли алюминий, необходимо задуматься о причинах, приводящих к коррозии. Различные внешние факторы могут ускорять этот процесс. Причины появления ржавчины на алюминии могут быть следующими:

  1. Взаимодействие с какой-либо кислотой или щелочью.
  2. Механическое давление. Например, трение или сильный удар, после чего появляется царапина на верхнем слое металла.
  3. Существуют промышленные районы. В них продукты распада топлива влияют на оксидную пленку и разрушают ее. Металл начинает портиться. Аналогичная ситуация происходит в мегаполисах, где продукты распада топлива будут взаимодействовать с серой, а также с оксидами углерода. Подобный процесс разрушает пленку на алюминии. После такого рода внешнего воздействия алюминий подвергается коррозии.
  4. Следует помнить, что хлор, фтор, а также бром и натрий могут растворить защитный слой металла.
  5. Если на металл попадают строительные смеси, то он начинает быстро портиться. В данном случае на алюминий неблагоприятно воздействует цемент.
  6. Ржавеет ли алюминий от воды? Если она попадает на лист, то металл может быть подвержен коррозионным процессам. Важно при этом уточнить, какая жидкость оказывает воздействие. Многие используют специальный сплав, который не подвержен коррозии от воды. Его называют дюралюминием. Уникальный сплав используют вместе с медью, а также с марганцем.

Что такое электрохимическая коррозия и может ли она быть на листе алюминия?

Чаще всего появление электрохимической коррозии провоцируют гальванические пары. Повреждение появляется в месте соединения двух разных сплавов. В таком случае ржавчина будет явно бросаться в глаза. Важным моментом является то, что портится только один металл, а второй является источником запуска коррозионного процесса. Чтобы не бояться электрохимической коррозии, нужно использовать магниевый сплав. Специалисты из-за электрохимической ржавчины не рекомендуют использовать обычное железо при контакте с кузовом из алюминия.

Какие факторы могут замедлить процесс?

Существует ряд факторов, которые замедляют процессы коррозии алюминия, а некоторые из них останавливают подобное явление. Выделяют следующие:

  1. Чтобы свойства алюминия, препятствующие коррозии, сохранялись, необходимо поддерживать кислотно-щелочной баланс. Диапазон должен составлять от шести до восьми единиц.
  2. Считается, что чистый металл, без примесей, лучше противостоит агрессивной среде. Учеными были проведены эксперименты. По результатам можно сказать, сплавы чистого алюминия (90%) подвержены коррозии больше, чем сплав, содержащий 99% этого вещества. У первого варианта коррозия наступает в 80 раз быстрее, чем у второго сплава.
  3. Чтобы в агрессивной среде металл дольше не терял свои свойства, его обрабатывают специальной краской. Можно использовать полимерный состав. После обработки появляется дополнительный защитный слой.
  4. Если добавить в сплав при производстве 3% марганца, то появится возможность избежать коррозии алюминия.

При каких условиях начинается разрушение алюминия на воздухе

Некоторые интересуются, ржавеет ли алюминий на воздухе. Если будет разрушена оксидная пленка на верхнем слое металла, то может начаться процесс коррозии. В результате может проявиться ржавчина. Рост пленки, как правило, замедляется на свежем воздухе. Следует помнить, что оксид алюминия отличается хорошей сцепкой с поверхностью металла.

Если лист хранится на складе, то пленка будет от 0,01 до 0,02 мкм. Если металл соприкасается с сухим кислородом, то толщина оксидной пленки на поверхности будет от 0,02 до 0,04 мкм. Если алюминий подвергают термической обработке, то толщина пленки изменяется. Она будет равна 0,1 мкм.

Считается, что алюминий обладает достаточной стойкостью, чтобы использовать его на свежем воздухе. Например, его применяют в сельской местности, а также в удаленных промышленных зонах.

Как вода воздействует на описываемый металл?

Коррозия алюминия в воде может наступить от повреждения верхнего слоя и защитной пленки. Высокая температура жидкости способствует скорейшему разрушению металла. Если алюминий поместить в пресную воду, то коррозионные процессы практически не будут наблюдаться. Если повысить температуру воды, то изменений можно не заметить. Когда жидкость нагревается до температуры 80 градусов и выше, то металл начинает портиться.

Скорость коррозии алюминия увеличивается, если в воду попадает щелочь. Описываемый металл обладает повышенной чувствительностью к соли. Именно поэтому морская вода для него губительна. Чтобы использовать этот металл в морской воде, необходимо в жидкость добавлять магний или кремний. Если использовать лист алюминия, в составе которого есть медь, то коррозия сплава будет протекать гораздо быстрее, чем у чистого вещества.

Опасна ли для алюминия серная кислота?

Люди интересуются, ржавеет ли алюминий в серной кислоте. Подобная кислота является потенциально опасной для сплавов. Она обладает ярко выраженными окислительными свойствами. Они разрушают оксидную пленку и ускоряют коррозию металла.

Интересным моментом является то, что концентрированная холодная сера не влияет на алюминий. Если алюминий нагреть, тогда могут начаться процессы коррозии металла. В таком случае появляется соль, ее называют сульфатом алюминия. Она растворима в воде.

Стойкость алюминия в азотной кислоте

Описываемый металл отличается повышенной стойкостью при попадании в раствор азотной кислоты. Его часто синтезируют для того, чтобы получить концентрированную азотную кислоту.

Какие вещества не оказывают воздействия на алюминий?

Не стоит бояться коррозионных процессов, если алюминий соприкоснется с лимонной кислотой. Не изменят свойства его сплава также яблочная кислота и фруктовый сок. Масляная слабо влияет на сплавы, в состав которых входит алюминий.

Будет ли происходить коррозия металла при контакте со щелочью?

Не стоит допускать контакта алюминия с различными щелочами. Они легко разрушают защитную пленку на верхнем слое. Металл вступает в реакцию с водой, после чего начинает выделяться водород. Процесс коррозии происходит в данном случае быстро. Ртуть и медь также пагубно влияют за защитный слой алюминия.

Итак, мы выяснили, ржавеет ли алюминий. Как видите, не всегда он имеет хорошую коррозионную защиту.

Suzuki Escudo BRUTUS › Бортжурнал › Алюминий на железе – зло? или познавательная коррозия.

С чего обычно начинаются работы по добавлению функционала наших машин? Правильно – с посещения сайтов и форумов, чтобы посмотреть, как другие реализовали подобные идеи, подчерпнуть что-то интересное и не совершать чужих ошибок. Но всегда ли стоит верить тому, что написано на форумах? Чужой опыт не всегда является истиной и редко описывается человеком, достигшим Дзен в данном вопросе. Вспоминаю свои первые посты – такую ерунду писал, да еще и отстаивал свою правоту, да так убедительно. А ведь кто-то может этим воспользоваться. Так же помню читал раньше, где уже не помню, о том, что ни в коем случае нельзя выполнять отделку кузова алюминием. Звучало это приблизительно так: «Ребята, да Вы что, совсем физику не учили?! При контакте алюминия и железа Вы создаете гальваническую пару и у Вас кузов за полгода сгниет весь, растворится! Головой-то надо думать хоть иногда!». Гальваническая пара создается, да, но будет ли таким плачевным результат? Об этом далее.
По моей новой профессии отправили меня учится на повышение квалификации в Уфимский Государственный Нефтяной Технический Университет, где в течении двух недель кандидаты технических наук рассказывали мне о коррозии металла и как с ней бороться. Эта статья не будет научно-публицистической, дабы не забивать Вам голову, постараюсь все рассказать на примере яблок, образно.
Итак, по механизму протекания коррозия делится на химическую и электрохимическую. Химическая коррозия протекает в неэлектролитической среде при высокой температуре. Так как мы рассматриваем кузов автомобиля, то данный тип коррозии не применим. Нас интересует электрохимическая коррозия, электролитом в которой выступает влага. Из курса физики и химии мы все помним, что все металлы имеют кристаллическую решетку, в которой электроны свободно двигаются и называется такая решетка металлосвязью. Эта связь атомов не очень крепкая и ее свойства позволяют активно использовать данные материалы в нашей жизни.
Но тот факт, что она не крепкая доставляет нам проблемы. Например, диполи воды (а вода, в силу своего строения, является довольно агрессивной средой) разбивают металлосвязь и наиболее активно это происходит в местах, где количество электронов недостаточно, вытягивая молекулы металла и создавая с ними более стабильное соединение. Эти места являются очагами коррозии. Как же возникают участки металла с малым количеством электронов? Связано это как раз со способностью электронов свободно перемещаться в кристаллической решетке металла. Все металлы имеют естественный потенциал (электростатический), отличный от нуля. Железо в естественных условиях имеет потенциал, равный приблизительно -0,44 Вольта, цинк -0, 76 В, алюминий -1, 67 В, магний -2,3 В. Но даже металл одной природы, например, лист железа, в разных своих частях имеет отличающиеся потенциалы. Незначительно, но отличаются. Это связано с различными причинами, в том числе с механическими напряжениями в структуре металла, различными вкраплениями, острыми краями, заусенцами, царапинами, наклёпами, сварочными швами и т.д. Такие места имеют более отрицательный потенциал по отношению к другим частям и они являются анодными зонами, т.е. анодами (остальные части соответственно являются катодами).
При протекании электрохимической коррозии в электролите анод насыщает электронами через проводник катод, тем самым теряя силу молекулярной связи и разрушается под действием агрессивной среды.
Вспомните места, где наиболее часто гниет кузов – это сгибы кузова, швы, соединения различных частей и т.д., т.е. в местах, где присутствует влага и есть дополнительные факторы, создающие анодные зоны. Те же полики на наших машинах не гниют равномерно по всей площади. Очаги начинают развиваться в углах и на сгибах. Каждый из Вас может в качестве подтверждения провести один небольшой и не сложный опыт: Возьмите два одинаковых гвоздя. Один из них согните на 90 градусов. Затем обезжирьте оба и не касаясь пальцами (можно брать их бумажкой) положите в раствор поваренной соли (NaCl). Коррозия будет протекать наиболее интенсивно на согнутом гвозде в месте изгиба. На прямом гвозде она будет протекать более равномерно по всей площади и менее интенсивно. Кому доводилось разбирать деревянные постройки, в которых ржавые гвозди, могут вспомнить, что согнутые гвозди в местах сгибов очень легко ломаются и практически все место слома ржавое насквозь.
От действия коррозии кузов защищает изоляция, в роли которой выступают краска и грунтовка. Но тут есть один момент – в местах нарушения изоляции коррозия будет развиваться более интенсивно, нежели бы весь металл был голым, без изоляции.
Так какое же все-таки влияние оказывает алюминий на железо в местах контакта? Металлы с более отрицательным естественным потенциалом при соприкосновении с железом выступают в роли анода, т.е. защищают металл от коррозии. К таким металлам относятся цинк, алюминий и магний. Т.е. при отделке кузова алюминием при наличии электролита между ними в качестве анода будет выступать алюминий и именно он будет разрушаться. Процесс этот длительный, а при условии, что алюминий редко несет серьезные механические нагрузки – еще и безболезненный. На данном принципе построена протекторная защита металлоконструкций от коррозии, например, нефтепроводов.
Конечно, никто Вам гарантий того, что уложив лист алюминия на полик Вы полностью защите кузов от коррозии, здесь не дает. На этот процесс влияет много факторов, в том числе токи, протекающие по кузову от электроприемников, различные агрессивные среды, разлитые масла, химические жидкости и т.д. Но хуже алюминием Вы не сделаете, даже наоборот.
Здесь еще стоит отметить, что в местах контакта кузова с металлами, имеющими меньший естественный потенциал по отношению к железу, железо уже не будет катодом, а станет анодом, как следствие процесс коррозии будет протекать более интенсивно. К таким металлам относятся никель, олово, свинец, медь. Серебро и золото тоже, но они думаю у вас в машинах не валяются.

Вот собственно и все о коррозии и с чем ее едят, не сильно кратко, но и не очень заумно) Надеюсь, что статья оказалась для Вас полезной!

Коррозия алюминия и его сплавов. Методы борьбы и защиты алюминия от коррозии

Хотя алюминий является цветным металлом и, в сравнении с обычной сталью, стоит относительно дорого, используется он человеком достаточно широко. Применяться этот прочный и легкий материал может в быту, в строительстве, на производстве. Химическая формула алюминия в таблице Менделеева выглядит так: Al.

Подвержен ли коррозии

Ржавеет алюминий, как известно, очень медленно. По крайней мере, железо и сталь с ним в этом плане сравниться не могут. Объясняется стойкость алюминия к коррозии прежде всего с тем, что при обычных условиях на его поверхности образуется тонкая оксидная защитная пленка. В результате химическая активность алюминия резко снижается.

Факторы, влияющие на устойчивость к ржавлению

К коррозии алюминий устойчив, но в некоторых случаях он все же может начать довольно-таки быстро разрушаться из-за окисления. Происходит это обычно при повреждении по каким-либо причинам пленки или невозможности ее образования.

Чаще всего внешней тонкой защиты алюминий лишается под воздействием кислот или щелочей. Также причиной разрушения пленки могут стать и обычные механические повреждения.

После разрушения пленки Al и его сплавы начинают ржаветь, то есть саморазрушаться, как и многие другие металлы. При этом подвергаться может алюминий и коррозии:

  • Химической. В этом случае ржавление происходит в газовой среде без воды. В этом случае поверхность алюминиевого изделия разрушается равномерно по всей площади.
  • Электрохимической. Коррозия алюминия в данном случае протекает во влажной среде.
  • Газовая. Этот вид коррозии возникает тогда алюминий непосредственно контактирует с каким-нибудь химически агрессивным газом.

Уравнение коррозии алюминия (окисления кислородом) на воздухе выглядит следующим образом: 4AI+3O2=2AL2O3.

Химическая формула оксидной защитной пленки – AL2O3.

Самой устойчивой к коррозии разновидностью является технический алюминий. То есть практически чистый 90% металл. Сплавы алюминия, к сожалению, ржавлению подвержены гораздо больше. При этом считается, что меньше всего коррозийную устойчивость этого металла снижают примеси магния, а больше всего — меди.

Такие материалы широко используются в строительстве, пищевой и химической промышленности. Также их очень часто применяют в машиностроении. Считается, что неплохо подобные материалы подходят и для возведения сооружений, подвергающихся воздействию морской воды.

В том случае, если магния в состав сплава входит не более 3%, антикоррозийные свойства он будет иметь практически такие же, как и технический алюминий. Магний в таком сплаве находится в твердом растворе и в виде частиц Al8Mg5, равномерно распределенных по всей матрице.

Если этого металла в сплаве содержится больше 3%, частицы Al8Mg5 начинают выпадать по большей мере не внутри зерен, а по их границам. А это, в свою очередь, крайне негативно сказывается на антикоррозийных свойствах материала. То есть изделие становится гораздо менее устойчивым к ржавлению.

Сплавы с магнием и кремнием

Такие материалы чаще всего применяются в машиностроении и в строительстве. Mg2Si делают сплавы этой разновидности очень прочными. Иногда составляющим подобных элементов является и медь. Ее также вводят в сплав для упрочения. Однако добавляют медь в такие материалы в очень небольших количествах. Иначе антикоррозийные свойства алюминиевого сплава могут сильно понизиться. Межкристаллическое ржавление в них начинается уже при добавлении свыше 0.5% меди.

Также склонность к коррозии у таких материалов может возрастать при неоправданном увеличении количества входящего в их состав кремния. Это вещество добавляют в алюминиевые сплавы обычно в таких пропорциях, чтобы после образования Mg2Si не оставалось ничего лишнего. Кремний в чистом виде содержат лишь некоторые материалы этой разновидности.

Коррозия алюминия и его сплавов с цинком

Ржавеет Al, как уже упоминалось, медленнее, чем его сплавы. Касается это в том числе и материалов группы Al-Zn. Такие сплавы очень востребованы, к примеру, в самолетостроении. Некоторые их разновидности могут содержать медь, другие нет. При этом первый тип сплавов, конечно же, является к коррозии более устойчивым. В этом плане материалы Al-Zn сравнимы с магниево-алюминиевыми.

Сплавы этой разновидности с добавлением меди проявляют признаки некоторой неустойчивости к ржавлению. Но при этом разрушаются из-за коррозии они все же медленнее, чем изготовленные с использованием магния и Cu.

Основные способы борьбы с ржавлением

Конечно же, снизить скорость коррозии алюминия и его сплавов можно в том числе и искусственным путем. Способов защиты таких материалов от ржавления существует всего несколько.

К примеру, исключить контакт этого металла и его сплавов с окружающей средой можно путем окрашивания ЛКМ. Также для защиты алюминия от ржавления часто применяется электрохимический способ. В этом случае материал дополнительно покрывается слоем более активного металла.

Еще один способ защиты Al от ржавления — это высоковольтное оксидирование. Также для предотвращения коррозии алюминия может использоваться методика порошкового окрашивания. Применяют для его защиты, конечно же, и ингибиторы ржавления.

Как производится оксидирование

С использованием такой методики алюминий и его сплавы от коррозии защищают достаточно часто. Выполняют оксидирование под напряжением в 250 В. При применении такой методики на поверхности металла или его сплава образуется прочная оксидная пленка.

Воздействие на материал током в данном случае производится с использованием водяного охлаждения. При низких температурах из-за напряжения пленка на поверхности алюминия образуется очень прочная и плотная. Если же процедура производится при высоких температурах, она получается достаточно рыхлой. Обработанный в такой среде алюминий нуждается в дополнительной защите от контакта с воздухом (окрашивании).

Изделие при использовании такой технологии сначала обезжиривают в растворе щавелевой кислоты. Затем алюминий или сплав опускают в щелочь. Далее, на металл воздействуют током. На заключительном этапе, если оксидирование проводилось при достаточно высокой температуре, материал дополнительно окрашивают с погружением в растворы солей, а затем обрабатывают паром.

Этот способ, как и оксидирование, применяется для защиты алюминия от ржавления достаточно часто. Окрашиваться такой материал может по сухой, влажной методике или порошковым способом. В первом случае алюминий сначала обрабатывают составом, содержащим цинк и стронций. Далее, на металл наносят собственно сам ЛКМ.

При использовании порошкового способа рабочую поверхность предварительно обезжиривают путем погружения в щелочные или кислотные растворы. Далее, на изделие наносятся хроматные, циркониевые, фосфатные или титановые соединения.

Очень часто стимуляторами начала коррозийных процессов в алюминии и его сплавах становятся другие металлы. Так происходит обычно при прямом контакте изделий или их частей. Чтобы предотвратить ржавление алюминия, в этом случае используются специальные изоляторы. Изготавливаться такие прокладки могут из резины, паронита, битума. Также в данном случае могут использовать лаки и краски. Еще одним способом защитить алюминий от коррозии при контакте с другими материалами является покрытие его поверхности кадмием.

В особенности важно обеспечить изоляцию алюминиевых деталей в разного рода механизмах и узлах от прямого соприкосновения с медью. Также считается, что защищать от контакта с другими металлами следует не только собственно детали, изготовленные из Al. В плане устойчивости к коррозии железо алюминию, как и сталь, к примеру, сильно уступает. Поэтому такие металлы и некоторые другие часто защищают особым образом. Материалы просто покрывают защитным алюминиевым слоем. От контакта с медью или другими металлами, конечно же, нужно беречь и такие изделия.

Советуем подписаться на наши страницы в социальных сетях: Facebook | Вконтакте | Twitter | Google+ | Одноклассники

Статьи

Коррозионная стойкость алюминия

Одним из самых важных качеств алюминия является его исключительно высокая стойкость к коррозии. Наибольшей коррозионной стойкостью обладает алюминий высокой чистоты, алюминий технической чистоты с малым количеством примесей, сплавы алюминий – магний (сплавы с относительно невысоким содержанием магния до 3-4%); сплавы систем алюминий – магний – кремний (при отсутствии меди или ограниченным ее содержанием до 0,1%). Наиболее подвержен коррозии среди всех алюминиевых сплавов – дюралюминий, в котором содержится до 6% меди.

Усиленная коррозия дюралюминия объясняется, тем, что при термической обработке из твердого раствора выделяются кристаллиты соединений алюминия с медью, которые с основным металлом образуют электрические микропары, являющиеся причиной межкристалитной коррозии. Для того чтобы повысить стойкость против коррозии продукции из дюралюминия, производят так называемое плакирование. Оно заключается в том, что на поверхность заготовки накладывают тонкий лист чистого алюминия или алюминиево-магниевого сплава, нагревают до 150-200° и прокатывают до получения гладкой поверхности.

Алюминий обладает высокой коррозионной стойкостью к морской воде, уксусной, лимонной, винной и другим органическим кислотам. Он практически не взаимодействует с концентрированной азотной и 100 %-ной серной кислотами, но быстро разрушается в разбавленной азотной кислоте, а также в разбавленной серной кислоте при концентрациях более 10 % (максимальная растворимость наблюдается в 80 %-ной серной кислоте). Быстро растворяется алюминий также в растворах щелочей, соляной, плавиковой и бромистоводородной кислотах; слабо взаимодействует с борной кислотой. Алюминий устойчив в нейтральных растворах солей магния и натрия, слабо влияют на алюминий сернистый газ, аммиак и сероводород.

Однако алюминий легко вступает в реакцию с кислородом. В кислородосодержащей среде, алюминий покрываетя твердой и плотной пленкой окисла алюминия Al2O3, которая не растворяется в воде. Эта пленка защищает алюминий во влажной среде от дальнейшей коррозии.

Окружающая нас атмосфера всегда имеет определенный уровень влажности, а также определенный уровень загрязнений и отходов. Учитывая, что свойства атмосферы отличаются в зависимости от региона и степени индустриализации, можно выделить: атмосфера сельская – средняя влажность и малая степень загрязнений; атмосфера приморских регионов – высокая влажность, большое количество производных хлора, йода, средняя степень загрязнений; атмосфера городская – средняя влажность, среднее содержание окислов углерода и серы, серной кислоты и продуктов сжигания жидкого топлива; атмосфера промышленная – средняя влажность, большое количество окислов углерода и серы, кислот (серной, соляной, азотной, фтористой).

Одним из самых эффективных методов является анодирование. Анодирование состоит из ряда электрохимических процессов по подготовке поверхности и по созданию на ней более твердой и устойчивой против коррозии пленки окислов алюминия, чем пленка, полученная при естественном окислении. Сразу же после анодирования искусственная бесцветная пленка, обладающая большой адсорбционной способностью, может быть окрашена неорганическими пигментами в любые цвета путем погружения деталей в подогретую ванну с красителем.

Другим распространенным способом защиты от коррозии является нанесение на металлопрокат лакокрасочных покрытий, препятствующее проникновению к поверхности металла влаги, агрессивных газов и жидкостей. Лакокрасочные покрытия, как правило, состоят из слоя грунтовки и одного или нескольких нескольких слоев полимерного покрытия, адгезионно связанных с защищаемой поверхностью. Покрытие получается нанесением жидких лакокрасочных материалов валками на окрашиваемую поверхность с преследующей полимеризацией пленки в проходном тоннеле при температуре 220-280С. Такое покрытие выдерживает высокую степень деформации вместе с металлом и является надежной защитой от коррозии.

Читать еще:  Шестерня привода спидометра ведомая
Ссылка на основную публикацию
Adblock
detector